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Algorithms and Data Structures 

 In this course, we will look at: 
– Algorithms  for solving problems efficiently 
– Data structures  for efficiently storing, accessing, 

and modifying data 
 We will see that all data structures have 

trade-offs 
– There is no ultimate data structure... 
– The choice depends on our requirements 

 
 



What is an algorithm? 

An algorithm is a sequence of unambiguous 
instructions for solving a problem, i.e., for 
obtaining a required output for any legitimate 
input in a finite amount of time. 

 
 
 



What about data structures   

How data is organized 
– A data structure is defined by  
• the logical arrangement of data elements, combined 

with: 
• the set of operations we need to access the elements.  

 
 



What is this Course About? 

Clever ways to organize information in order to 
enable efficient computation 
 
– What do we mean by clever? 
– What do we mean by efficient? 

 



Clever?   Efficient? 
Array, Lists, Stacks, Queues 
Heaps 
Binary Search Trees 
AVL Trees 
Hash Tables 
Graphs 
Disjoint Sets 

Insert 

Delete 

Find 

Merge 

Shortest Paths 

Union 

Data Structures Algorithms 



Motivation Example 

Consider searching for an element in an array 
– In an array, we can access it using an index 
array[k] 

Consider searching for an entry in a sorted 
array 

– In a sorted array, we use a fast binary search 
• Very fast 

 



Mathematical Background  

– The ceiling and floor functions 
– L’Hôpital’s rule 
– Logarithms 
– Arithmetic and other polynomial series 

• Mathematical induction 
– Geometric series 
– Recurrence relations 
– Combinations 

 



Floor and ceiling functions 
 The floor function maps any real number x onto 

the greatest integer less than or equal to x: 
 

 
 

 The ceiling function maps x onto the least integer 
greater than or equal to x: 
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L’Hôpital’s rule 
 If you are attempting to determine 
 
 
 
 but both                                       , it follows 
 
 
 
 
 Repeat as necessary…  
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 We will begin with a review of logarithms: 
 
 If  n = em, we define 

m = ln( n ) 
 

 It is always true that eln(n) = n; however, 
ln(en) = n requires that n is real 

Logarithms 



 Exponentials grow faster than any non-
constant polynomial 

 
  
 for any d > 0 
 
 Thus, their inverses—logarithms—grow 

slower than any polynomial  

Logarithms 
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Logarithms 

                         
grows slower but only up to n = 93 

(93.354, 4.536) 
ln(n) 
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 You can view this with any polynomial 

ln(n) 
4 n

Logarithms 

(5503.66, 8.61) 



 A plot of log2(n) = lg(n), ln(n), and log10(n) 

lg(n) 

ln(n) 

log10(n) 

Logarithms 
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Growth Functions  
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 Next we will look various series 
 
 Each term in an arithmetic series is 

increased by a constant value (usually 1) : 
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Arithmetic series 



 We could repeat this process, after all: 
 
 
 

 
 however, it is easier to see the pattern: 
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Other polynomial series 
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 The next series we will look at is the 
geometric series with common ratio r: 

 
 
and if |r| < 1 then it is also true that 
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Geometric series 



 A common geometric series will involve 
the ratios r = ½ and r = 2: 
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 Finally, we will review recurrence relations: 
– Sequences may be defined explicitly:  xn = 1/n 

1, 1/2, 1/3, 1/4, ... 
 

– A recurrence relationship is a means of 
defining a sequence based on previous 
values in the sequence 
 

– Such definitions of sequences are said to be 
recursive 

 

Recurrence relations 



 Define an initial value: e.g., x1
 = 1 

  
 Defining xn in terms of previous values: 

– For example, 
     xn = xn – 1 + 2 
   xn = 2xn – 1 + n 
   xn = xn – 1 + xn – 2 
 

Recurrence relations 



 Given the two recurrence relations 
xn = xn – 1 + 2  xn = 2xn – 1 + n 

 and the initial condition x1
 = 1 we would like to 

find explicit formulae for the sequences 
 

 In this case, we have 
xn = 2n – 1                     xn = 2n + 1 – n – 2 

 respectively 

Recurrence relations 



 The previous examples using the 
functional notation are: 
    f(n) = f(n – 1) + 2  g(n) = 2 g(n – 1) + n 

  

 With the initial conditions f(1) = g(1) = 1, the 
solutions are: 

  f(n) = 2n – 1  g(n) = 2n + 1 – n – 2  

Recurrence relations 



 In some cases,  given the recurrence 
relation, we can find the explicit formula: 
– Consider the Fibonacci sequence: 

    f(n) = f(n – 1) + f(n – 2) 
    f(0) = f(1) = 1 
 
  

Recurrence relations 



Combinations 
 Given n distinct items, in how many ways can you choose k of 

these? 
– I.e., “In how many ways can you combine k items from n?” 
– For example, given the set {1, 2, 3, 4, 5}, I can choose three of these 

in any of the following ways: 
{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, 
{1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}, 

 
 The number of ways such items can be chosen is written 
 
 
 where          is read  as “n choose k”s 
 
   There is a recursive definition: 
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Combinations 
 The most common question we will ask in this vein: 

– Given n items, in how many ways can we choose two of them? 
– In this case, the formula simplifies to: 

 
 
 

 For example, given {0, 1, 2, 3, 4, 5, 6}, we have the following 21 pairs: 
 
   {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {0, 6}, 
               {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, 
                           {2, 3}, {2, 4}, {2, 5}, {2, 6}, 
                                       {3, 4}, {3, 5}, {3, 6}, 
                                                   {4, 5}, {4, 6}, 
                                                               {5, 6} 
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Formulation 

 Often F(n) is an equation: 
– For example, F(n) may be an equation such 

as: 
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