
Algorithms and Data
Structures

Lec01
Introduction

Dr. Mohammad Ahmad

Algorithms and Data Structures

 In this course, we will look at:
– Algorithms for solving problems efficiently
– Data structures for efficiently storing, accessing,

and modifying data
 We will see that all data structures have

trade-offs
– There is no ultimate data structure...
– The choice depends on our requirements

What is an algorithm?

An algorithm is a sequence of unambiguous
instructions for solving a problem, i.e., for
obtaining a required output for any legitimate
input in a finite amount of time.

What about data structures

How data is organized
– A data structure is defined by
• the logical arrangement of data elements, combined

with:
• the set of operations we need to access the elements.

What is this Course About?

Clever ways to organize information in order to
enable efficient computation

– What do we mean by clever?
– What do we mean by efficient?

Clever? Efficient?
Array, Lists, Stacks, Queues
Heaps
Binary Search Trees
AVL Trees
Hash Tables
Graphs
Disjoint Sets

Insert

Delete

Find

Merge

Shortest Paths

Union

Data Structures Algorithms

Motivation Example

Consider searching for an element in an array
– In an array, we can access it using an index
array[k]

Consider searching for an entry in a sorted
array

– In a sorted array, we use a fast binary search
• Very fast

Mathematical Background

– The ceiling and floor functions
– L’Hôpital’s rule
– Logarithms
– Arithmetic and other polynomial series

• Mathematical induction
– Geometric series
– Recurrence relations
– Combinations

Floor and ceiling functions
 The floor function maps any real number x onto

the greatest integer less than or equal to x:

 The ceiling function maps x onto the least integer
greater than or equal to x:

3.2 3 3

5.2 6 6

= =
− = − = −

3.2 4 4

5.2 5 5

= =
− = − = −

L’Hôpital’s rule
 If you are attempting to determine

 but both , it follows

 Repeat as necessary…

()
()

lim
n

f n
g n→∞

() ()lim lim
n n

f n g n
→∞ →∞

= = ∞

()
()

() ()
() ()

1

1lim lim
n n

f n f n
g n g n→∞ →∞

=

() ()kf nNote: the kth derivative will always be shown as

 We will begin with a review of logarithms:

 If n = em, we define

m = ln(n)

 It is always true that eln(n) = n; however,
ln(en) = n requires that n is real

Logarithms

 Exponentials grow faster than any non-
constant polynomial

 for any d > 0

 Thus, their inverses—logarithms—grow

slower than any polynomial

Logarithms

lim
n

dn

e
n→∞

= ∞

ln()lim 0dn

n
n→∞

=

Example: is strictly greater than ln(n) 1/2()f n n n= =

ln(n)

n

Logarithms

Logarithms

grows slower but only up to n = 93

(93.354, 4.536)
ln(n)

3 n

1/3 3()f n n n= =

 You can view this with any polynomial

ln(n)
4 n

Logarithms

(5503.66, 8.61)

 A plot of log2(n) = lg(n), ln(n), and log10(n)

lg(n)

ln(n)

log10(n)

Logarithms

17

Growth Functions

1,00E-01

1,00E+00

1,00E+01

1,00E+02

1,00E+03

1,00E+04

1,00E+05

1,00E+06

1,00E+07

1,00E+08

1,00E+09

1,00E+10

2 4 8 16 32 64 128 256 512 1024
n

T(
n)

n
log n
sqrt n
n log n
100n
n^2
n^3

all

		2		2		2		2		2		2		2

		4		4		4		4		4		4		4

		8		8		8		8		8		8		8

		16		16		16		16		16		16		16

		32		32		32		32		32		32		32

		64		64		64		64		64		64		64

		128		128		128		128		128		128		128

		256		256		256		256		256		256		256

		512		512		512		512		512		512		512

		1024		1024		1024		1024		1024		1024		1024

n

log n

sqrt n

n log n

100n

n^2

n^3

n

T(n)

2

0.3010299957

1.4142135624

0.6020599913

200

4

8

4

0.6020599913

2

2.4082399653

400

16

64

8

0.903089987

2.8284271247

7.2247198959

800

64

512

16

1.2041199827

4

19.2659197225

1600

256

4096

32

1.5051499783

5.6568542495

48.1647993062

3200

1024

32768

64

1.806179974

8

115.595518335

6400

4096

262144

128

2.1072099696

11.313708499

269.7228761149

12800

16384

2097152

256

2.4082399653

16

616.5094311198

25600

65536

16777216

512

2.709269961

22.627416998

1387.1462200196

51200

262144

134217728

1024

3.0102999566

32

3082.5471555992

102400

1048576

1073741824

all-2^n

		2		2		2		2		2		2		2		4

		4		4		4		4		4		4		4		16

		8		8		8		8		8		8		8		256

		16		16		16		16		16		16		16		65536

		32		32		32		32		32		32		32		4294967296

		64		64		64		64		64		64		64		1.84467440737096E+19

		128		128		128		128		128		128		128		3.40282366920938E+38

		256		256		256		256		256		256		256		1.15792089237316E+77

		512		512		512		512		512		512		512		1.34078079299426E+154

		1024		1024		1024		1024		1024		1024		1024		0

n

log n

sqrt n

n log n

100n

n^2

n^3

2^n

n

T(n)

2

0.3010299957

1.4142135624

0.6020599913

200

4

8

4

0.6020599913

2

2.4082399653

400

16

64

8

0.903089987

2.8284271247

7.2247198959

800

64

512

16

1.2041199827

4

19.2659197225

1600

256

4096

32

1.5051499783

5.6568542495

48.1647993062

3200

1024

32768

64

1.806179974

8

115.595518335

6400

4096

262144

128

2.1072099696

11.313708499

269.7228761149

12800

16384

2097152

256

2.4082399653

16

616.5094311198

25600

65536

16777216

512

2.709269961

22.627416998

1387.1462200196

51200

262144

134217728

1024

3.0102999566

32

3082.5471555992

102400

1048576

1073741824

data

		n		log n		sqrt n		n log n		100n		n^2		n^3		2^n

		2		0.3010299957		1.4142135624		0.6020599913		200		4		8		4

		4		0.6020599913		2		2.4082399653		400		16		64		16

		8		0.903089987		2.8284271247		7.2247198959		800		64		512		256

		16		1.2041199827		4		19.2659197225		1600		256		4096		65536

		32		1.5051499783		5.6568542495		48.1647993062		3200		1024		32768		4294967296

		64		1.806179974		8		115.595518335		6400		4096		262144		1.84467440737096E+19

		128		2.1072099696		11.313708499		269.7228761149		12800		16384		2097152		3.40282366920938E+38

		256		2.4082399653		16		616.5094311198		25600		65536		16777216		1.15792089237316E+77

		512		2.709269961		22.627416998		1387.1462200196		51200		262144		134217728		1.34078079299426E+154

		1024		3.0102999566		32		3082.5471555992		102400		1048576		1073741824		1,8E+308

 Next we will look various series

 Each term in an arithmetic series is

increased by a constant value (usually 1) :

()
0

1
0 1 2 3

2

n

k

n n
n k

=

+
+ + + + + = =∑

Arithmetic series

 We could repeat this process, after all:

 however, it is easier to see the pattern:

()22
3

0

1
4

n

k

n n
k

=

+
=∑

()() 3
2

0

1 2 1
6 3

n

k

n n n nk
=

+ +
= ≈∑

()()2

0

1 2 1
6

n

k

n n n
k

=

+ +
=∑

()22 4
3

0

1
4 4

n

k

n n nk
=

+
= ≈∑

Other polynomial series

() 2

0

1
2 2

n

k

n n nk
=

+
= ≈∑

 The next series we will look at is the
geometric series with common ratio r:

and if |r| < 1 then it is also true that

1

0

1
1

nn
k

k

rr
r

+

=

−
=

−∑

0

1
1

k

k
r

r

∞

=

=
−∑

Geometric series

 A common geometric series will involve
the ratios r = ½ and r = 2:

() n
nn

i

i
−

+

=

−=
−

−
=

∑ 22

1
1

2
1

2
1

1
2
1

0

1
1

0

1 22 2 1
1 2

nn
k n

k

+
+

=

−
= = −

−∑

2
2
1

0

=

∑

∞

=i

i

Geometric series

 Finally, we will review recurrence relations:
– Sequences may be defined explicitly: xn = 1/n

1, 1/2, 1/3, 1/4, ...

– A recurrence relationship is a means of
defining a sequence based on previous
values in the sequence

– Such definitions of sequences are said to be
recursive

Recurrence relations

 Define an initial value: e.g., x1
 = 1

 Defining xn in terms of previous values:

– For example,
 xn = xn – 1 + 2
 xn = 2xn – 1 + n
 xn = xn – 1 + xn – 2

Recurrence relations

 Given the two recurrence relations
xn = xn – 1 + 2 xn = 2xn – 1 + n

 and the initial condition x1
 = 1 we would like to

find explicit formulae for the sequences

 In this case, we have
xn = 2n – 1 xn = 2n + 1 – n – 2

 respectively

Recurrence relations

 The previous examples using the
functional notation are:
 f(n) = f(n – 1) + 2 g(n) = 2 g(n – 1) + n

 With the initial conditions f(1) = g(1) = 1, the
solutions are:

 f(n) = 2n – 1 g(n) = 2n + 1 – n – 2

Recurrence relations

 In some cases, given the recurrence
relation, we can find the explicit formula:
– Consider the Fibonacci sequence:

 f(n) = f(n – 1) + f(n – 2)
 f(0) = f(1) = 1

Recurrence relations

Combinations
 Given n distinct items, in how many ways can you choose k of

these?
– I.e., “In how many ways can you combine k items from n?”
– For example, given the set {1, 2, 3, 4, 5}, I can choose three of these

in any of the following ways:
{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5},
{1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5},

 The number of ways such items can be chosen is written

 where is read as “n choose k”s

 There is a recursive definition:

()
!

! !
n n
k k n k

= − n
k

1 1
1

n n n
k k k

− −
= + −

Combinations
 The most common question we will ask in this vein:

– Given n items, in how many ways can we choose two of them?
– In this case, the formula simplifies to:

 For example, given {0, 1, 2, 3, 4, 5, 6}, we have the following 21 pairs:

 {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {0, 6},
 {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6},
 {2, 3}, {2, 4}, {2, 5}, {2, 6},
 {3, 4}, {3, 5}, {3, 6},
 {4, 5}, {4, 6},
 {5, 6}

()
()1!

2 2! 2 ! 2
n n nn

n
−

= = −

Formulation

 Often F(n) is an equation:
– For example, F(n) may be an equation such

as:

()
0

1
for 0

2

n

k

n n
k n

=

+
= ≥∑

2

1
2 1 for 1

n

k
k n n

=

− = ≥∑

1

0
2 2 1 for 0

n
k n

k
n+

=

= − ≥∑

	Algorithms and Data Structures
	Algorithms and Data Structures
	What is an algorithm?
	What about data structures 	
	What is this Course About?
	Clever? Efficient?
	Motivation Example
	Mathematical Background
	Floor and ceiling functions
	L’Hôpital’s rule
	Logarithms
	Logarithms
	Logarithms
	Logarithms
	Logarithms
	Logarithms
	Growth Functions
	Arithmetic series
	Other polynomial series
	Geometric series
	Geometric series
	Recurrence relations
	Recurrence relations
	Recurrence relations
	Recurrence relations
	Recurrence relations
	Combinations
	Combinations
	Formulation

